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ABSTRACT 

The basis of many statistical tests is the assumption that the data are drawn from a normal population. 
The change in pressure over one to ten days at .1000 dynamic meters, at 50°N and 70°\Y, is tested, and 
the circumstances under which such pressure changes form a normal distribution are dcscril>ed. Correlo- 
grams of the pressure change at this location are calculated, by season, for the period 1934 through 1940. 
From this, a population of near-zero autocorrelation is defined. For this limited population, it is demons 
strated that the mean and skewness are zero, and that the kurtitsis is three. Next, the distribution is shown 
to be normal by the \' test. Finally, an estimate is given of the size of sample necessary to eliminate the 
synootic effect. 

1. Introduction 

In connection with a study of the variation of 
pressure with geomagnetic activity, the statistical 
properties of the change in pressure at 50°N and 7<)°\Y 
have been tested. The pressures were read from the 
Historical weather maps. The choice of location was 
dictated by the following considerations. The relation- 
ship between pressure and geomagnetic activity im- 
proves with increasing latitude. Therefore, 50°N was 
chosen as the northernmost latitude for which sufficient 

1 The research reported in this paper has been sponsored by the 
Geophysics Research Division of the Air Force Cambridge Re- 
search Center, under Contract AF 19(122)-49. 
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FIG. 1. Correlogram of 3000-gdm pressure in fall 
(September-November). 

data are available. The longitude 70°\V is nearest to 
a satisfactory network of stations, over North America, 
without l>eing loo close to orographic disturbances. 
Autocorrelations have been calculated for lags of 
one through ten days by season, and the circumstances 
under which the pressure change forms a normal 
distribution will be described. 

2. Autocorrelation 

Since the pressure patterns of any day resemble the 
pressure patterns of preceding and following days, it 
is reasonable to assume that a correlation exists 
iK'twcen pressures on successive days. The bias due 
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Fio. 2. Correlogram of 3000-gdm pressure in spring 
(March-May). 
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to this persistence is eliminated if the correlation 
between the members is zero. Namias (1947) computed 
this correlation for the point 40°N and 90°W at 
10,000 ft, using a year's data during 1944-1945. The 
resultant curve is similar to the average of those 
below. Klein (1951) has combined a great deal of 
data and computed a spatial distribution of the 
correlation for a one-day lag. 

L P.P,+. - - 
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Since the correlation may vary seasonally, the 
pressures at 50°N and 70°W for the period 1934 
through 1940 are divided into four seasons; winter 
(December through February), spring (March through 
May), summer (June through August), and fall 
(September through November). <"orrelograms are 
constructed for each season, for lags of one through 
ten days. The correlation coefficient is given by 
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where Pi is the pressure on any given day, Pi+c the 
pressure e days later, and n the number of observa- 
tions. The results for the four seasons are shown in 
figs. 1, 2, 3, and 4. In the fall and spring, the correla- 
tions do not reduce to zero. They drop off rapidly for 
lags one and two, and then level off at an average 
value of 0.25. There is a great deal of scatter from 
year to year, with the level value varying from 0.50 
to —0.10. The failure of the correlation coefficient to 
reduce to zero is probably a result of the seasonal 
trend of rising pressures in the spring and falling 
pressures in the fall. 

In the winter, the curves are remarkably similar 
for lags one through five. All five yearly correlations 
reduce to zero between four and five. For lags five 
through ten there is considerable variation from year 

to year, with the average near zero. In the summer the 
shape of the curves is similar to that of the curves of 
the spring or fall, except that the correlation levels 
off at a value near zero. As a result of these calcula- 
tions, it may IK- stated that the seasonal effect and the 
persistence effects are probably eliminated if changes 
of pressure over three days or more, in the summer or 
winter, are considered. 

3. Normality of the frequency distribution 

The population is now limited to the seasons and 
lags described at the end of the last section. The 
pressure on the eth day minus the pressure on the 
zero day is defined as AP«, and this quantity is 
computed for e = 3, 4, 5, and 6. ("lass intervals of 5 
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FIG. 3. Correlogram of 3000-gdm pressure in winter 
(December-February). 

FIG. 4. Correlogram of 3000-gdm pressure in summer 
(June-August). 
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mb are chosen, with the zero interval containing 
pressure changes of —2.5 to +2.5 mb. Such a division 
into class intervals facilitates calculations for large 
samples, and is especially helpful in a later application 
of the x' test- Frequency distributions of the AP. 
are tabulated, and the mean, and the second, third, 
and fourth moments about the mean are calculated 
(Hoel, 1947). 

The mean is 

i = - I xj,% (2) 
» ,_i 

where x\ is the midpoint of the class interval. /, the 
frequency of occurrence in the ciass interval, h the 

number of intervals, and n = £/, 's the total number 
i -i 

of cases. 
The kth moment is 

1   » 
(3) 

IRjl The 2nd moment, m%, is the variance.  Its root, 
is the standard deviation. 

The third moment, »ij. is a measure of the skewness. 
However, to obtain a pure number independent of the 
units used, the third moment is divided by the cul>e 
of the standard deviation. If this measure of skewness 
is denoted as «j, 

a: = »i,/mi'. (4) 

If the distribution is normal, a% is zero, since a normal 
curve is symmetrical about the mean. 

The fourth moment, m«, is a measure of kurtosis. 
To obtain a dimensionless quantity, n,, w, is divided 
by the square of mj. Thus, 

a. mt/mt
J. (5) 

In a normal distribution, a, = 3. 
The mean and the moments about the mean are 

tabulated in table 1. From table 1, it can be observed 
that the actual values of the mean and the moments 
of AP, are in good agreement with the theoretical 
values of a normal distribution. However, in the 
winter £ has a slight tendency to be negative, while in 

TABLE I. The rr.«»an and the moments about the mean for 
AP. in the winter and summer. 

~i «,« 
(mb) (mb) •i «< 

Winter 
AP, -0.2 11.5 -0.1 2.9 
AP, -0.2 12.0 0.0 2.8 
AP, -0.4 12.0 0.0 2.8 
AP, -0.3 12.8 

Summer 
0.0 2.9 

AP, 0.3 7.4 0.0 3.1 
AP, 0.3 7.8 0.0 3.0 
AP, 0.4 7.6 0.0 3.1 
AP. 0.6 7.8 0.1 2.9 

the summ«r £ has a slight tendency to be positive. 
This would indicate that, on the average, the pressure 
drops slightly in winter and rises slightly in summer 
as time progresses. The standard deviation mf* is 
larger in winter than in summer. This is due to the 
larger rangjc of pressure fluctuation in winter. The 
measures of skewness and kurtosis are so close to the 
theoretical values that no comment seems necessary. 

Since all the tests of central tendency are satisfac- 
tory, an additional test of the distribution away from 
the mean is applied. The x5 test determines whether 
there is a significant difference between the actual and 
a theoretical distribution. 

, =   *  [/.(«) - /r(x) J 
(6) 

where /.(>> is the actual frequency, and /rU) is the 
theoretical frequency. Since, in our case, the theoretical 
frequency is the normal distribution, 

/fW--J^«p[-»(!-?)•], (7) 

where x is tin- value of the variatc, x the mean of the 
variate, and <r the standard deviation. It is assumed 
that the mean and standard deviation of the sample 
are representative of the population as a whole. 
Since these two quantities have Ix-en calculated above, 
it is possible to tabulate the theoretical distribution 
without difficulty. 

It can lie seen from (6) that a zero value for x5 

corresponds to an exact agreement between the actual 
and theoretical values, whereas increasing values of x5 

correspond to increasingly poor agreement. Therefore, 
a value of jr1 is selected, xn1. as a critical value for 
judging significance, such that the probability of the 
true distribution Ix-ing normal even though x1 > Xo5 

is 0.05. The x* distribution function depends only on 
the parameter r, the number of degrees of freedom. 
The degrees of freedom in this case equal the number 
of class intervals minus three. By knowing the degrees 
of freedom.it is possible to compare calculated values 
of x1 with xo* for the 5-per rent level (Hoel, 1047. table 
III, p. 246). If x1 > Xo1, the actual observations are 
significantly different from the theoretical, and the 
AP. frequencies are not normally distributed. 

The results of the x* test for the goodness of fit of the 
actual AP, distributions arc shown in table 2. In 
every case, in both winter and summer, x! < Xo5. 
However, itifasmuch as the xs test is relatively insensi- 
tive, it is necessary to consider how well within the 
limit the computed values of x* lie. It can be seen 
that the winter values of x* are proportionately less. 
As a result, «ven though the summer AP, meet the 
requirement of the x* test, they must be used with 
caution. Moreover, the smallest sample used in this 
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test contains 450 items. This is larger than is often 
available to the statistical meteorologist. To discover 
whether a small sample meets the requirement of 
approaching the normal distribution, a sample of 25 
days was selected with the aid of a table of random 
numbers (Snedecor, 1946). The 25 days were selected 
from the 720 available during the period 1932-1940. 
The pressure on the key day is subtracted from the 
pressure four days later, and the average AP4 of one 
sample is calculated. 

The hypothesis is made that A/\ is zero, within the 
error of the sample. The 5-per cent confidence level is 
again chosen. The standard deviation of the means of 
samples of size n, am, is calculated. 

TABLE 2. x* test for the goodneM of fit of the A/', distributions 
to the theoretical normal curve. PQx* > X^D • 0.0S. 

*• «• P 

Winter 
HP, 10.0 15.5 8 
A/\ 9.4 16.9 9 
Ar\ 12.1 18.3 10 
A/». 6.5 

Summer 

18..? 10 

A/\ 12.3 12.6 6 
APi 10.4 12.6 6 
Af\ 8.8 12.6 6 
&P. 9? 12.6 6 

For a sample of 49, the hypothesis is satisfied for 

both seasons. 

 I (8)    4. Conclusions 
n1        n \ 

where the members of the sample take on the values 
X and have the mean t. If the hypothesis is true, 
If I < 2am. The results for two separate samples of 
25 are: 

Winlrr Summrr 

Sample (a): A/5, 2.4 -2.7 
2om 4.8 2.6 

Sample (b): A7\ 0.9 -1.9 
2a„ \A 26 

Since the hypothesis is not verified for one of the 
summer cases, the samples were enlarged to 49 by the 
choice of 24 additional cases. The results for the two 
samples of 49 are: 

Wintrr Summer 

0.6 
3.2 

-0.2 -1.3 
3.0 2.2 

Sample (a):    Af, 
2(T. 

-1.7 
2.2 

Sample (b):    A/', 
2<r„ 

For every test, the change in pressure over more 
than three days in the winter fulfills the requirements 
of a normal-distribution test. In the spring and fail, 
the autocorrelations of pressure do not reduce to zero, 
so that the moment and x5 test have not been applied. 
The change in pressure over more than three days in 
the summer satisfies the conditions for the normal 
distribution. However, to eliminate the effect of the 
weather situation, a larger sample is needed in the 
summer than in the winter. 
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